A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Parabolic Equations
نویسندگان
چکیده
In this paper, we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates for both the state and the control approximation. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem. AMS subject classifications: 49J20, 65N30
منابع مشابه
VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملPOD a-posteriori error estimates for linear-quadratic optimal control problems
The main focus of this paper is on an a-posteriori analysis for the method of proper orthogonal decomposition (POD) applied to optimal control problems governed by parabolic and elliptic PDEs. Based on a perturbation method it is deduced how far the suboptimal control, computed on the basis of the POD model, is from the (unknown) exact one. Numerical examples illustrate the realization of the p...
متن کاملA Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method for Optimal Control Problems Governed by Parabolic Equations
In this paper, we examine the discontinuous Galerkin (DG) finite element approximation to convex distributed optimal control problems governed by linear parabolic equations, where the discontinuous finite element method is used for the time discretization and the conforming finite element method is used for the space discretization. We derive a posteriori error estimates for both the state and ...
متن کاملA Posteriori Error Estimates for Semilinear Boundary Control Problems
In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...
متن کاملA-posteriori error estimation of discrete POD models for PDE-constrained optimal control
In this work a-posteriori error estimates for linear-quadratic optimal control problems governed by parabolic equations are considered. Different error estimation techniques for finite element discretizations and model-order reduction are combined to validate suboptimal control solutions from low-order models which are constructed by Galerkin discretization and application of proper orthogonal ...
متن کامل